Hybrid Perovskites Solar Cells

The Organic-Inorganic hybrid perovskites have opened new avenues to develop low cost and high efficiency photovoltaic devices. Perovskites with general formula MAX3 (M=Organic part; A=Pb, Sn; X= Halogens) have attracted significant attention as efficient light harvesters. In particular, CH3NH3PbI3 has been intensely studied over past couple years for solar cell applications. Solar cells based on the hybrid perovskites have shown efficiencies more than 20%, claiming these materials as potential candidates for next generation solar devices. Lead based perovskite solar cells are relatively new devices and modeling of these materials is focused on understanding the materials properties.

Hybrid Perovskites Solar Cells

Additionally, searching Lead free [1] hybrid perovskite is another interesting future challenge of this field. We also focus on stability of Guanidinium (GA) based hybrid perovskites GAPbI3 and GAPbBr3 hybrid perovskite along with electronic properties and solar energy conversion efficiency. Further alloying of GAPbI3 will be considered to evaluate formation probability of intermediate alloy. The outcome is planned to be connected with the experimental observations to have a more impact in the scientific community [2]

References

  1. Bromination Induced Stability Enhancement with Multivalley Optical Response Signature in Guanidinium [C(NH2)3]+ Based Hybrid Perovskite Solar Cells, Amitava Banerjee, Sudip Chakraborty, Rajeev Ahuja, Journal of Materials Chemistry A5(35):18561-18568 (2017)
  2. Substitution induced band structure shape tuning in hybrid perovskites (CH3NH3Pb1-xSnxI3) for efficient solar cell applications, P. Kanhere, Sudip Chakraborty, C. Rupp, R. Ahuja, Z. Chen, RSC Advances, 5, 107497 (2015)
  3. Rational Design and Combinatorial Screening Approach for Lead free and Emergent Hybrid Perovskites, Sudip Chakraborty, W. Xie, N. Mathews, M. Sherburne, R. Ahuja, Mark Asta, S. G. Mhaisalkar, ACS Energy Letters – Perspective, (in press) 2017