Non-flat elliptic four-folds, three-form cohomology and strongly coupled theories in four dimensions

2021-02-22

Authors: Paul-Konstantin Oehlmann

Preprint number: UUITP-11/21

Abstract: In this note we consider smooth elliptic Calabi-Yau four-folds whose fiber ceases to be flat over compact Riemann surfaces of genus g in the base. These non-flat fibers contribute Kähler moduli to the four-fold but also add to the three-form cohomology for g>0. In F-/M-theory these sectors are to be interpreted as compactifications of six/five dimensional N=(1,0) superconformal matter theories. The three-form cohomology leads to additional chiral singlets proportional to the dimension of five dimensional Coulomb branch of those sectors. We construct explicit examples for E-string theories as well as higher rank cases. For the E-string theories we further investigate conifold transitions that remove those non-flat fibers. First, we show how non-flat fibers can be deformed from curves down to isolated points in the base. This removes the chiral singlet of the three-forms and leads to non-perturbative four-point couplings among matter fields which can be understood as remnants of the former E-string. Alternatively, the non-flat fibers can be avoided by performing birational base changes, analogous to 6D tensor branches. For compact bases these transitions alternate all Hodge numbers but leave the Euler number invariant.